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A Remark on the Condensation in the 
Hard-Core Lattice Bose Gas 
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We point out that Bose-Einstein condensation occurs at sufficiently low 
temperature in a hard-core 1d-lattice Bose gas for d>~ 3 and particle density 1/2, 
by exploiting its equivalence to a spin-l/2 XYmodel. 
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1. The study of lattice Bose gas models was proposed (1) in an attempt to 
understand the effect of the interaction on Bose-Einstein condensation. 
It was shown in ref. 1 that, if the interaction has a hard core (i.e., each 
site could be occupied by at most one particle), then the model can be 
represented as a quantum spin-l/2 model on the given lattice. The 
approximate study of the phase diagram by mean-field and spin-wave 
techniques was hence possible. 

Recently, the exact solution, exhibiting condensation, for the hard-core 
(h.c.) Bose gas on a complete graph has been obtained. ~2'3) The one-par- 
ticle operator in this model is, however, dependent on the number of sites 
and has no proper spatial structure; in spin language it corresponds to the 
mean-field XYmodel.  These papers revived the interest in a rigorous study 
of the more realistic model of the h.c. Bose gas on the Za-graph with edges 
between nearest neighbors as initially proposed in ref. 1. In a recent paper 
Toth (4) derives, by adapting Roepstorff's method (5) to the h.c. situation, an 
improved upper bound on the condensate. Efforts have also been made 
toward obtaining an exact solution of the model on different graphs. ~6) 
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In this note we point out that, insofar as one is interested only in 
establishing condensation, a straightforward application of the Gaussian 
domination argument of ref. 7 is sufficient to prove it in the h.c. Bose gas 
on the Zd-graph at low temperature in a half-filled Zd-lattice for d>~3. 
Unfortunately, the argument breaks down for other densities. To give 
support to the conjecture that condensation persists in a whole density 
range around 1/2, we show that this is the case for a "classical limit" of the 
model: the classical XYmodel  in a tranverse field. 

2. We shall define the h.c. Bose gas model on gd and rederive its 
representation as a spin-l/2 XYmodel.  Bose condensation in the former 
turns out to be equivalent to ferromagnetic long-range order in the latter. 

Let A - {x ~ Zd: 0 ~< x ~ < N, i = 1 ..... d}. The one-particle Hilbert 
space is ~ = C  A with the canonical basis {ex:x~A}, with ex(y)=,~xy 
representing the state with one particle at site x e A. The one-particle 
kinetic energy operator '~A is taken to be 

(/~A~b)(x) = --(1/2) A(b(x)= (1/2) ~ [~b(x)- ~b(y)] (1) 
y E A , ( y , x )  

where O=~x~q)(X)exS~A and ( y , x )  means that x, y are nearest 
neighbours (n.n.) on the torus A (periodic boundary conditions). The 
eigenvalues and eigenvectors of ~A are 

d 

ek = 2 ~ sin2(kJ/2); ~bk(x) = N-d/2e ikx (2) 
j ~ l  

where keB  A := [(2z~/N){O,...,N-1}] d. Let ~ be the symmetric Fock 
space over ~A and bx* (bx) and/ ;~ (/~k) be the usual creation (annihilation) 
operators on ~ corresponding to e~ and ~bk, respectively. The number 
operator and free Hamiltonian are therefore 

N~= ~ b*bx (3) 
x E A  

H ~  ~ (b*-b*)(bx-by)= ~ ~kb*bk (4) 
( x , y )  k ~ A  

Here Y.<x,y> means summation over the (unordered) pairs of n.n. in A. The 
thermodynamics of the free lattice gas is hence obtained as usual. 

To switch on the hard-core interaction means to discard all states 
with more than one particle at one site, i.e., to restrict everything to the 
subspace ~-h~ of ~ spanned by the orthonormal vectors: ~ A  

~ =  1-I b* Io), X = A  
x E X  
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~-h~ let us define With P denoting the orthogonal projection onto = ~ ,  

a~ = Pb~ I~]~ (5) 

a~-hc Because b ~ h f  ~ ~ A, 

3a A 

One can easily check that its adjoint is 

ax* = eb*  I~o 

The major difference between a~ *) and b~ *) consists in their different 
commutation properties: [a~*),a.~*)]=0 for x # y ,  but a ~ = a * 2 = 0 ,  

* = I. For every operator A on ~A which is a monomial in b* ax a* + axa~ 
and b~ in normal form, the operation 

P A I ~]c 

is equivalent to replacing all b (*) by a/*), e.g., 

which in fact equals 

PNAi~o= ~ a*a~ 
x ~ A  

NA I ~hc 

The Hamiltonian of the h.c. model is given by 

HA=(1/2)  ~ (a*--a*y)(ax--ay)= ~ ~k6~gtk=PH~ (4') 
( x , y )  k ~ B A  

The Gibbs state will be 

(" >~,,,A = ZA(fl, # ) - '  Tr(. exp[--fl(HA -- #NA)]) 

~-hr and ZA(fl, #) is the normalizing factor: where the trace is taken over ~ A, 
( I )  B,~,A = 1. 

We shall next consider the X Y  representation. For x ~ A, let (C2)x be 
a two-dimensional space with orthonormal basis {la)x;  a =  +__1/2} and 
carrying the usual representation of the ou(2) algebra by Pauli matrices: 

0 $ 2 = [  0 " 
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Let 

"(ffA = (~ (C2)x 
xEA 

A unitary U: F ~  ~ -* ~A is defined by 

x G A  

where ax(x)= 1/2 if x ~ X  and = -1 /2  if x E A \ X .  Then, one has 

l i S 2  ( 6 )  Uax U* = S~ = S~ - 

by means of which one can make the translation of the model from ~-h~ ~ A  
to flA. In particular, 

H~ p U(HA--#NA) U* ~ 1 1 2 2 = = -  ( S x S y + S x S y ) - ( p - d )  ~ (S~+�89 d) 
( x , y }  x ~ A  

(7) 

which is, up to an irrelevant constant, the Hamiltonian of a spin-l/2 X Y  
ferromagnet with exchange J = 1 in a transverse field H = / ~ -  d. We denote 
by (.)~P,H,A the corresponding Gibbs state on f#A 

Defining as usual the condensate density by 

p~(fl, p ) =  lim N a(@[~O)~,,,A= lim N d(fi*ho)~,u, A (8) 
N - ~  N ~ c o  

our assertion is the following: 

Proposition. For d>~ 3, # = d, and fl sufficiently large, the h.c. Bose 
gas on Z d has nonzero condensate density: pc(J3, d) > 0. The corresponding 
particle density is p = l i m ~  ~ N-d(NA )/~,d,a = 1/2. 

Indeed, using (6) one obtains 

( sp 
2" N - a  E S (9) 

P c ( B '  ~ ) =  l mcx ~ J 1 x ~ A  f l , # - - d , A  

p(fl,/])= 1/2+ lira ~ 3 , ~ p  (10) \ ~ x  / [~,# -- d,A 

For # =  d, the external field in (7) vanishes and one is exactly in the 
framework of Theorem 5.2 in ref. 7, which proves Pc(fl, d ) >  0 for large ft. 
Also, /c3xsp - 0  by symmetry, and p =  1/2. Nt, J x /  fl, O, A - -  



Condensation in Hard-Core Lattice Bose Gas 901 

3. If p r d, the approach of ref. 7 does not work, because their basic 
bound (Lemma 4.1) needs a real matrix representation of all Six, i = 1, 2, 3. 
For the Ising ferromagnet on 7/a with d~>2 (where this is possible), 
Kirkwood (8) proved that long-range 6rder is not destroyed by switching a 
small transverse field. It is to be expected that the X Y  model shares the 
same property. This agrees with physical intuition: a field orthogonal to 
the plane in which symmetry breaking occurs should not affect drastically 
the order parameter. We shall show below that this is true for its classical 
limit, which is relevant for high spin values. Though there is no hope to 
obtain in this way a proof for the h.c. Bose gas, which is the spin-l/2 case, 
the result may increase the confidence in such an expectation. The classical 
model is described as follows. 

2 At every x E A lives a unit 3-dimensional vector sx = (s~x, Sx, s 3) e S 2. 
Here S 2 is endowed with the invariant measure v. Consider the interaction 
Hamiltonian (s = {sx; x e A}) 

H~(s)--  ~ 1 ! 9 2 3 (11) - (SxSy + s - x s , ) -  h Y~ sx 
( x , y )  x e A  

and denote ( . )o l  the corresponding Gibbs measure. fl, h,A 
We shall prove long-range order in this model, i.e., 

lim N -a  ~ S i x ) )  > 0  (12) 
N ~  oo j 1 x e A  / /13, h,A 

for ]hi < h0 and fl > flo(h). This follows, in an infrared bound approach, (9) 
from two basic bounds: 

(i) For all k E B A ,  k:/=O, 

2 

Z (SJkSJk)Cfll, h,A ~ ( / ~ g k ) - I  

j = l  

with ek defined in Eq. (2). 

(ii) There exists h o > 0  such that for ]hi <h0 one can find e > 0  and 
/3~ < oo, such that 

2 
Z j 2 cl ((sx))~.h,A~>~ foral l  A and fl>>-fll 

j = l  

Inequality (i) is the standard infrared bound, whose proof (9) is not 
affected by the external field. To show (ii), we start by finding the ground 
configurations. With p:, = [(six) 2 + (s~) 2] 1/2, one has 
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H~(s )>~-  ~ p x P y - l h l ~ ( 1 - p ~ )  1/2 
<x,y> x 

>1 - 2  (dp2x + [hi(1 - - p 2 x ) l / 2 ) ~  --EoN d (13) 
x 

where E o = d +  (h2/4d), with equalities iff all Sx are parallel, s3h > 0  and 
p~ = 1 - (h/2d) 2 "= p,2 if [hi < ho := 2d, and Eo = [hi attained at Px = 0 if 
Ih[ >~h0. Let now Z~,x be the characteristic function of s~ (S2) A for which 

2 ~ el Px'~ 20.. We shall find a and /~1 such that (Z~,~)a,h,A~< 1/2, whence (ii) 
follows. By the chessboard estimate, (1~ 

c, [ ly~A ~cl iN a (14, (Xa, x)~,h,A ~ 2a, y/a,h,A A 

If 20. < 1 -  (h/ho) 2, the minimum energy on configurations satisfying 
2 py ~ 20. for all y is again attained on parallel spins with maximum py--2 _ 20", 

i.e., H~>~-[2d0.  + Ih1(1-4~2) 1/2] N a. So, for some EI<Eo one has, by 
H cl>~ - E l  Nd on the interesting configura- choosing the appropriate a, a =1 

tions. On the other hand, with Et < E2 < Eo, one can find a neighborhood 
V c S  2 of (p*,0, ( 1 - p ' 2 )  1/2) such that, if s y e V  for all y e A ,  H~(s)~< 
- E 2 N  d. Then 

[(y~A ~c l  IN -d eflE1v({O~2ff}, 
Z~,y/ I ~ (15) / ~,h,A~ etJ&v( V) 

which is less than 1/2 for/~ larger than some/~ .  
In conclusion, the classical model has ferromagnetic long-range order 

at low temperature whenever the field is less than the value at which there 
is only one ground state with all spins pointing along the field. 
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